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Abstract. Taking as a starting point the results of LDA calculations, which show that in MgB2 the phonons
have a strong quartic anharmonicity and that the bond-stretching electron-phonon interaction (EPI) has
both a linear and a large quadratic component, we propose a model Hamiltonian which successfully matches
a number of experimental evidences. We relate the single critical temperature for both superconducting
gaps to a phonon-induced inter-band coupling whose amplitude increases with temperature. We also obtain
phonon frequencies and linewidths depending on the band filling, as well as band energies and hybridization
amplitudes depending on the phonon number.

PACS. 74.20.-z Theories and models of superconducting state – 74.70.-b Superconducting materials

1 Introduction

The electronic structure of the 40 K superconductor MgB2

is characterized by the presence at the Fermi level of two
hybrid bands (σ and π) of very different character [1].
This feature reflects itself in the experimental evidence of
two different gaps [2–6], which however, in the absence of
magnetic fields, have a common critical temperature [7].
The observation of a large Boron isotope effect [8] rules out
the applicability of theories of Coulomb-interaction-driven
two-band superconductivity [9], suggesting instead that
the electron-phonon-interaction(EPI) is the key factor.

According to the standard theory of the EPI-driven
two-band superconductivity [10], a single critical tem-
perature for both gaps implies an interaction between
the bands contributing to the Fermi surface. The micro-
scopic origin of this interaction for the σ and π bands in
MgB2 is not yet clarified. Impurity scattering can be ruled
out [11,12] and, to the best of our knowledge, no other pre-
cise suggestion has been advanced for the EPI scenario.
An estimate of the interband coupling strength has been
given in reference [13], based on the band structure cal-
culation of reference [14], yielding a small, but decidedly
non-negligible value. The strong temperature dependence
of the anisotropy of the critical field [13] indicates that
the interband coupling increases with temperature. The
present work suggests that such coupling might be due to
the unusual phononic structure of MgB2. There is a gen-
eral consensus that the dominant electron-phonon interac-
tion is due to a modulation of the inter-site hopping ampli-
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tudes due to the bond-stretching vibration of the Boron
ions [14–19]. By working out the corresponding Eliash-
berg’s λ, reference [15] shows that there is a good agree-
ment with the results following the LDA data, and with
the experiments. In one-dimensional materials, this type
of interaction is usually termed the Su-Schrieffer-Heeger
(SSH) interaction, and we shall use this terminology also
in the present context for convenience.

The unusual phononic features (first revealed by
ab initio calculations of the electron and phonon band
structures [14,16–18,20]) are the presence of anharmonic
contributions (up to fourth order in the displacements)
to the phononic Hamiltonian, and of both a linear and
a quadratic term in the SSH interaction. Experimen-
tal evidence of anharmonicity comes from neutron [16]
and Raman scattering [21] data. More specifically, the
first-principle calculations in reference [20] find that the
E2g branch has, along the Γ− A line in the Brillouin
zone, an energy around 120 meV in the harmonic com-
pound AlB2 and of only 70 meV in MgB2, in good quan-
titative agreement with the neutron scattering data [16].
Additionally, reference [21] presents first-principle cal-
culations of the evolution of the phonon spectra when
Al substitutes Mg agreeing with Raman data, which
confirm the frequency softening on passing from har-
monic AlB2 to anharmonic MgB2. One important as-
pect of such measurements is that, as Al substitution
changes the occupancy of the bands at the Fermi sur-
face, the phonon frequency and lifetime both depend
on the band filling. So, in relating those data to the
change in phononic properties, one should be able to
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disentangle the effects of anharmonicity from those of
band-filling variations. However, one must also men-
tion that Raman and infrared data of reference [19] for
Mg1−xAlxB2 when 0 ≤ x ≤ 0.50, on the contrary, find
the frequency of the E2g mode almost insensitive to the
Al content.

Another theoretically predicted effect of the anhar-
monicity is the reduction of the averaged electron-phonon
coupling, as expressed by Eliashberg’s λ. For that, the
experimental evidence is not so clear. Indeed, the first-
principle calculation of the phonon spectra of refer-
ence [18] are in excellent agreement with the experimental
data, and they yield at the same time that the strength of
λ is reduced in the anharmonic case. However, if one takes
the phonon linewidth as roughly expressing the combined
intensity of the electron-phonon interactions, both refer-
ences [19] and [21] show that it strongly decreases with
x. As Eliashberg’s λ for a bond-stretching interaction [22]
depends on structure, band-filling and frequencies, it is
difficult to precisely identify the cause(s) of the observed
effects.

The ab initio numerical calculations [14,16–18,20]
have yielded valuable insights about the electronic and
phononic structure of MgB2, which we take as the input
information for the work presented here. Our aim in this
paper is to propose a model Hamiltonian which represents
the physics implied by the results of the first-principle cal-
culations as far as the phononic features are concerned. We
have no ambition of giving detailed quantitative results.
However, our model is quantitatively consistent with the
numerical results of references [14,16,18]. While suggest-
ing a plausible mechanism for the inter-band coupling,
and therefore justifying [10] the presence of a single crit-
ical temperature for both superconducting gaps [2–6], at
the same time it also qualitatively allows for other exper-
imentally observed features: the increase with tempera-
ture of the inter-band coupling [13] and the fact that the
phonon frequency and linewidth both depend on band-
filling [19,21]. In particular, we find indications that the
frequency hardening on Al substitution can not be ac-
counted for by the anharmonic-to-harmonic change only.

Detailed quantitative estimates based on the proposed
model are left for future work.

2 The electronic Hamiltonian

Our model of the electronic structure of MgB2 by a
Hamiltonian has two bands, labeled c and d, which hy-
bridize through an inter-site hopping term. Then, in the
real space representation, the bare electronic Hamiltonian
reads:

Hel = εc
∑
lσ

nc
lσ + εd

∑
lσ

nd
lσ +

∑
l〈j〉σ

[
tcc
lj c†lσcjσ + tdd

lj d†lσdjσ

]

+
∑
l〈j〉σ

tcd
lj

(
c†lσdjσ + d†jσclσ

)
(1)

where
∑

l〈j〉 means summing on the z nearest neighbors
j of a given site l, and then on l. In MgB2 one expects
that tcc

lj , tdd
lj � tcd

lj [1,13,15]. The electron-phonon cou-
pling parameters in the SSH scenario are derivatives of
the hopping amplitudes with respect to the inter-site dis-
tance. By using c†lσ = N−1/2

∑
k c†kσ exp (ikRl) we pass to

the reciprocal space representation, yielding :

Hel =
∑
kσ

(εc + ztcc
k )nc

kσ +
∑
kσ

(
εd + ztdd

k

)
nd

kσ

+
∑
kσ

ztcd
k

(
c†kσdkσ + d†kσckσ

)
(2)

where tµν
k = z−1

∑
〈j〉 tµν

lj exp
[
ik

(
Rl −Rj

)]
with

µ, ν = c, d. To diagonalize Hel we express the bare opera-
tors c†kσ , d†kσ through the hybridized operators α†kσ, β†kσ
according to:

c†kσ = α†kσ cosϕk + β†kσ sin ϕk

d†kσ = −α†kσ sin ϕk + β†kσ cosϕk. (3)

In the following, any operator O expressed through
the hybridized operators will be denoted by a tilde Õ. By
choosing

tan (2ϕk) = − 2ztcd
k

εc
k − εd

k + z
(
tcc
k − tdd

k

) · (4)

Hel is brought to diagonal form Hel =⇒ H̃el =∑
kσ

(
Eα

k nα
kσ + Eβ

k nβ
kσ

)
, with the particle energies in the

hybridized bands given by:

Eα
k =

1
2

[
εc + εd + z

(
tcc
k + tdd

k

)]
+

1
2

√[
εc − εd + z

(
tcc
k − tdd

k

)]2 +
(
2ztcd

k

)2 (5)

Eβ
k =

1
2

[
εc + εd + z

(
tcc
k + tdd

k

)]
− 1

2

√[
εc − εd + z

(
tcc
k − tdd

k

)]2 +
(
2ztcd

k

)2· (6)

The α and β bands, at this stage completely decoupled
by the transformation of equation (3), represent in our
model the σ and π bands of MgB2.

3 The phononic Hamiltonian
with anharmonic terms

Following [16,18] we assume that the purely phononic
Hamiltonian Hph for MgB2 has to include, apart from the
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usual harmonic term, also a non-negligible quartic contri-
bution. The anharmonicity of the MgB2 phonon modes
has been analyzed in [17], showing that two E2g modes,
degenerate at the Γ point, have anharmonicities differ-
ing in the presence (mode labeled a in [17]), or absence
(mode b), of a third-order term. In reference [14] a cubic
term was included in the development of the deformation
energy. Its amplitude was found to be of the same order
as the linear term, i.e. about five times smaller than the
quartic term amplitude. It gives rise to terms non conserv-
ing the phonon numbers, analogously to the linear SSH
term. We’ll consider only the mode labeled E2g(b) in ref-
erence [17], which has no third-order anharmonicity, both
for short, and because the effect of the dropped terms is
similar, in amplitude and in type, to the one due to the
linear SSH term, which we keep. A similar assumption
of neglecting the E2g(a) mode has been explicitly [23] or
implicitly [16,18] made in other studies.

Under such assumptions, Hph takes the form [24]:

Hph =
∑

q

PqP−q

2M
+

M

2

∑
q

Ω2
ququ−q

+
M2

4N

∑
qp

xqpΩ
2
qΩ2

puqu−qupu−p (7)

where M is the Boron mass and Ωq is the frequency,
at the wavevector q along the Γ − A line, of the optical
mode of E2g symmetry. The parameter xqp expresses the
strength of the quartic term involving the wavevectors ±q
and ±p. In MgB2, from reference [16], one can estimate
xqp ≈ 7.8 eV−1.

By quantizing the phonon field according to the usual
relations:

uq =

√
~

2MΩq

(
b†−q + bq

)

Pq = i

√
~Ωq

2M

(
b†−q − bq

)

Lq =

√
~

2MΩq

(8)

the harmonic part becomes
∑

q ~Ωq

(
b†qbq + 1

2

)
. When

quantizing the quartic term, we neglect the terms with
different numbers of creation and destruction opera-
tors and keep the remaining four-operator products only
when diagonal. Namely, we approximate b†−qb

†
qb−pbp ≈(

δp,q + δp,−q

)
νqν−q, where b†qbq = νq. The quartic con-

tribution then reduces to:

∑
qp

xqp

(
~Ωq

4

) (
~Ωp

4

) (
b†−q + bq

) (
b†q + b−q

)
×

(
b†−p + bp

) (
b†p + b−p

) ≈
4

∑
q

(
~Ωq

4

) (
1
2

+ νq

) ∑
p

xqp

(
~Ωp

4

)(
1 + δqp

)
+ 4

∑
qp

xqp

(
~Ωp

4

) (
~Ωq

4

)
νqνp

(
1 + δq,−p

)
+ 2

∑
q

(
~Ωq

4

) (
b†−qb

†
q + b−qbq

) ∑
p

xqp

(
~Ωp

4

)

− 2
∑
qp

xqp

(
~Ωq

4

) (
~Ωp

4

)
+

∑
qp

xqp

(
~Ωq

4

) (
~Ωp

4

)
.

(9)

The product νqνp is approximated in the MFA fashion,
i.e. νqνp ≈ νq〈νp〉 + 〈νq〉νp − 〈νp〉〈νq〉. Putting together
the constant terms, we can rewrite equation (9) as:

∑
q

~Ωq

(
1
2

+ νq

) [
1
N

∑
p

xqp

(
~Ωp

2

)(
1
2

+ 〈νp〉
)

× (
1 + δq,−p

) ]
+

∑
q

~Ωq

(
b†−qb

†
q + b−qbq

)

×
[

1
N

∑
p

xqp

(
~Ωp

8

)]
+ const. (10)

Adding the harmonic contribution and defining

Xq ≡ 1+
1
N

∑
p

xqp

(
~Ωp

2

) (
1
2

+ 〈νp〉
) (

1 + δq,−p

)
(11)

we obtain the purely phononic Hamiltonian as:

Hph =
∑

q

~ΩqXq

(
1
2

+ νq

)

+
∑

q

~Ωq

(
b†−qb

†
q + b−qbq

) [
1
N

∑
p

xqp

(
~Ωp

8

)]
+ const.

(12)

This form can be diagonalized by a “squeezing” trans-
formation [25] eS ≡ exp

[
−∑

q ηq

(
b†−qb

†
q − b−qbq

)]
under

the condition that

tanh
(
2ηq

)
= − 1

Xq

(
1
N

) ∑
p

xqp

(
~Ωp

4

)
· (13)



16 The European Physical Journal B

Notice that equation (13) yields ηq < 0. The diagonal-
ized Hamiltonian eSHphe−S can now be written as:

eSHphe−S =∑
q

~Ωq

[
Xq cosh

(
2ηq

)
+ 2 sinh

(
2ηq

) (
1
N

) ∑
p

xqp

~Ωp

8

]

×
(

b†qbq +
1
2

)
+ const. (14)

By substituting ηq from equation (13) into equa-
tion (14), the renormalized frequency ωq of the harmonic
Hamiltonian for the squeezed phonons is written explicitly
as:

ωq = ΩqXq

[√
1− tanh2

(
2ηq

)]
(15)

where ΩqXq is the phonon frequency entering the
quadratic part of the unsqueezed phononic Hamiltonian
(see. Eq. (12)). It is not the true bare frequency, because,
from equation (11), Xq − 1 yields the contribution from
the diagonal part of the quartic terms treated in MFA, so
that ΩqXq already contains some effects of anharmonic-
ity, analogous to those taken into account, e.g. in refer-
ence [16]. Thus, equation (15) shows that ωq is increased
(hardened) with respect to the “harmonic frequency” Ωq

by Xq > 1, but the squeezing effect, taking account of the
two-phonon terms terms previously [16] neglected, coun-
teracts the hardening. According to references [14,16,18]
however, the squeezing effect is not strong enough for an
overall softening to result.

4 The linear electron-phonon interaction

The linear part of the SSH electron-phonon interaction is
written, in the real space representation symmetrized with
respect to the site indexes, as

H(1)
ep =

1
2

∑
l〈j〉σ

[
gcc

lj

(
c†lσcjσ + c†jσclσ

)

+ gdd
lj

(
d†lσdjσ + d†jσdlσ

)] (
ul − uj

)
+

1
2

∑
l〈j〉σ

gcd
lj

(
d†lσcjσ + c†jσdlσ + d†jσclσ + c†lσdjσ

) (
ul − uj

)
(16)

where gµν
lj = ∂tµν

lj /∂
(
ul − uj

) |0 = −gµν
jl with µ, ν = c, d,

are the coupling constants, and the 1/2 factor avoids dou-
ble counting.

The Fourier-transformed form of equation (16) is writ-
ten in terms of gµν

k = (1/z)
∑

〈j〉 gµν
lj exp(ik ·∆lj) (where

∆lj is the vector connecting the sites l and j) which we
combine in the definition of the coupling strength γµν

k,k−q

according to:

z

2

(
gµν

k−q + gµν
k − gµν

−(k−q) − gµν
−k

)
=

i
∑
〈j〉

gµν
lj

{
sin

[
(k − q) ·∆lj

]− sin
[
k ·∆lj

]} ≡
γµν

k,k−q/Lq. (17)

Equation (17) is the simplest possible form of the bond-
stretching electron-phonon interaction which includes the
relevant physics. It is adequate for a qualitative discussion,
but it is not good enough for a quantitative study.

Quantization of the phonons according to equation (8)
leads to:

H(1)
ep =

1√
N

∑
kqσ

[
γcc

k,k−qc
†
kσck−qσ

+ γdd
k,k−qd

†
kσdk−qσ + γcd

k,k−q

(
c†kσdk−qσ + d†kσck−qσ

) ]
×

(
b†−q + bq

)
. (18)

When transformed to the hybridized fermion represen-
tation H

(1)
ep reads:

H̃(1)
ep =

1√
N

∑
kqσ

[
Γ αα

k,k−qα
†
kσαk−q,σ + Γ ββ

k,k−qβ
†
kσβk−q,σ

+ Γ αβ
k,k−qα

†
kσβk−q,σ + Γ βα

k,k−qβ
†
kσαk−q,σ

] (
b†−q + bq

)
(19)

where the effective couplings are defined as:

Γ αα
k,k−q = γcc

k,k−q cosϕk cosϕk−q + γdd
k,k−q sin ϕk sinϕk−q

− γcd
k,k−q sin

(
ϕk + ϕk−q

)
(20)

Γ ββ
k,k−q = γcc

k,k−q sin ϕk sin ϕk−q + γdd
k,k−q cosϕk cosϕk−q

+ γcd
k,k−q sin

(
ϕk + ϕk−q

)
(21)

Γ αβ
k,k−q = γcc

k,k−q cosϕk sin ϕk−q − γdd
k,k−q sinϕk cosϕk−q

+ γcd
k,k−q cos

(
ϕk + ϕk−q

)
(22)

Γ βα
k,k−q = γcc

k,k−q sin ϕk cosϕk−q − γdd
k,k−q cosϕk sinϕk−q

+ γcd
k,k−q cos

(
ϕk + ϕk−q

)
. (23)

5 The quadratic electron-phonon interaction

According to references [14,16,18], the electron-phonon
Hamiltonian has to include also a quadratic term, which
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we write in real space in symmetrized form, as:

H(2)
ep =

1
2

∑
l〈j〉σ

[
f cc

lj

(
c†lσcjσ + c†jσclσ

)

+ fdd
lj

(
d†lσdjσ + d†jσdlσ

)] (
ul − uj

)2

+
1
2

∑
l〈j〉σ

f cd
lj

(
d†lσcjσ + c†jσdlσ + d†jσclσ + c†lσdjσ

)
× (

ul − uj

)2 (24)

where fµν
lj = ∂2tµν

lj /∂
(
ul − uj

)2 |0 = fµν
jl , with µ, ν = c, d.

We also develop
(
ul − uj

)2 = u2
l + u2

j − uluj − ujul. By
defining fµν

k ≡ z−1
∑

〈j〉 fµν
lj eik∆lj and introducing the

coefficients Fµν
kpq ≡ (z/2)

(
fµν

p + fµν
k − fµν

k−q − fµν
p+q

)
, the

Fourier transform reads:

H(2)
ep =

1
N

∑
kpqσ

[
F cc

kpq

(
c†kσcpσ + c†−pσc−kσ

)

+ F dd
kpq

(
d†kσdpσ + d†−pσd−kσ

)]
uquk−p−q

+
1
N

∑
kpqσ

F cd
kpq

(
d†kσcpσ + c†kσdpσ + d†−pσc−kσ + c†−pσd−kσ

)
× uquk−p−q. (25)

When quantizing the deformations according to equa-
tion (8), we shall take into account only the diagonal terms
and those which can be diagonalized by squeezing, by en-
forcing k = p. Then uquk−p−q reduces to:

uquk−p−q =⇒ uqu−qδpk =

δpkL2
q

(
b†−qb

†
q + bqb−q + νq + ν−q + 1

)
. (26)

Let us stress that our aim is to show that there are
some contributions to H

(2)
ep which provide an effective

inter-band coupling. We do not claim to be able to treat
all the terms in H

(2)
ep : we just want to select the sub-

set of “hot” terms. Under this approximation, by using
Fµν

k,q = Fµν
−k,−q, equation (25) reduces to:

H(2)
ep ≈ 2

1
N

∑
kqσ

L2
q

[
F cc

kqc†kσckσ + F dd
kq d†kσdkσ

+ F cd
kq

(
d†kσcpσ + c†kσdpσ

) ]
×

(
b†−qb

†
q + bqb−q + νq + ν−q + 1

)
. (27)

Let’ s now pass to the hybridized band picture, through
the transformation of equation (3). If we define for short

the energies:

Fαα
kq = 2L2

q

[
F cc

kq cos2 ϕk + F dd
kq sin2 ϕk − F cd

kq sin (2ϕk)
]

(28)

F ββ
kq = 2L2

q

[
F cc

kq sin2 ϕk + F dd
kq cos2 ϕk + F cd

kq sin (2ϕk)
]

(29)

Fαβ
kq = L2

q

[(
F cc

kq − F dd
kq

)
sin (2ϕk) + 2F cd

kq cos (2ϕk)
]

(30)

where

Fµν
kq =

∑
〈j〉

fµν
lj

{
cos

(
k∆lj

) [
1− cos

(
q∆lj

)]}
(µ, ν = c, d) (31)

then equation (27) can be rewritten compactly as:

H̃(2)
ep =

1
N

∑
kqσ

[
nα

kσFαα
kq + nβ

kσF ββ
kq +

(
α†kσβkσ + β†kσαpσ

)

× Fαβ
kq

](
b†−qb

†
q + bqb−q + νq + ν−q + 1

)
. (32)

6 The electron-phonon Hamiltonian
in the squeezed phonon representation

Let us now introduce the squeezed phonon represen-
tation also for H̃

(1)
ep + H̃

(2)
ep . By using the relation

eS
(
b†−q + bq

)
e−S = eηq

(
b†−q + bq

)
the linear coupling

term becomes:

eSH̃(1)
ep e−S =

1√
N

∑
kqσ

eηq

[
Γ αα

k,k−qα
†
kσαk−q,σ

+Γ ββ
k,k−qβ

†
kσβk−q,σ +Γ αβ

k,k−qα
†
kσβk−q,σ +Γ βα

k,k−qβ
†
kσαk−q,σ

]
×

(
b†−q + bq

)
. (33)

Then the linear coupling has a reduce amplitude, as
ηq < 0 (see Eq. (13)), consistently with the numerical
analysis of reference [18].

For the quadratic part H̃
(2)
ep we get:

eSH̃(2)
ep e−S =

1
N

∑
kq

[
Fαα

kq nα
kσ + F ββ

kq nβ
kσ

+ Fαβ
kq

(
α†kσβkσ + β†kσαkσ

) ]
× e2ηq

(
b†−qb

†
q + bqb−q + νq + ν−q + 1

)
. (34)
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In equation (34) we can decouple the electronic and
phononic terms in MFA. Indeed, assuming

〈b†−qb
†
q + bqb−q + νq + ν−q + 1〉 ≈ 2〈νq〉+ 1 (35)

and defining

Φq =
1
N

∑
kσ

[
Fαα

kq 〈nα
kσ〉+ 2F ββ

kq 〈nβ
kσ〉+ Fαβ

kq

(〈α†kσβkσ〉

+ 〈β†kσαkσ〉
)]

= Φ−q (36)

yields:

eSH̃(2)
ep e−S ≈

1
N

∑
kqσ

[
Fαα

kq nα
kσ + F ββ

kq nβ
kσ + Fαβ

kq

(
α†kσβkσ + β†kσαkσ

)]
× e2ηq

(
2〈νq〉+ 1

)
+

∑
q

e2ηqΦq

(
b†−qb

†
q + bqb−q

+ νq + ν−q + 1
)

+ const. (37)

By writing
∑

q ~ωq

(
νq + 1

2

)
= 1

2

∑
q ~ωq

(
νq + ν−q + 1

)
and reordering the Hamiltonian in the hybridized basis
we get:

eSH̃e−S =
∑
kσ

Eα
k nα

kσ +
∑
kσ

Eβ
k nβ

kσ +
∑

q

~ωq

(
νq +

1
2

)
+ eSH̃(1)

ep e−S + eSH̃(2)
ep e−S. (38)

Inserting eSH̃
(2)
ep e−S from equation (37) into equa-

tion (38) and reordering yields:

eSH̃e−S = Hdiag
el. +Hhyb

el +Hph +eSH(1)
ep e−S +const. (39)

where the diagonal electronic Hamiltonian is:

Hdiag
el. ≡

∑
kσ

[
Eα

k +
1
N

∑
q

Fαα
kq e2ηq

(
2〈νq〉+ 1

)]
nα

kσ

+
∑
kσ

[
Eβ

k +
1
N

∑
q

F ββ
kq e2ηq

(
2〈νq〉+ 1

)]
nβ

kσ (40)

and describes a phonon-depending renormalization of the
band energies. The hybrid electronic Hamiltonian is:

Hhyb
el ≡ 1

N

∑
kqσ

e2ηqFαβ
kq

(
2〈νq〉+ 1

)(
α†kσβkσ + β†kσαkσ

)
.

(41)
It represents a phonon-depending band hybridization
term. This is, we believe, the term responsible for the cou-
pling between the bands in MgB2 which results in a single
critical temperature for both gaps. We would like to point
out that, in the limit of small inter-bare-band hopping,

i.e. tcd
lj /tcc

lj → 0, and at zero temperature, where 〈νq〉 can
be neglected, one finds:

lim
tcd
lj /tcc

lj →0
e2ηqFαβ

kq = 2L2
qe

2ηq F cd
kq

= 2L2
qe

2ηq

∑
〈j〉

f cd
lj

{
cos

(
k∆lj

) [
1− cos

(
q∆lj

)]}
. (42)

Apart from geometric factors, this amplitude depends
only on the intensity of the squeezing (through e2ηq) and
on the strength of the quadratic inter-band SSH electron-
phonon coupling f cd

lj . As f cd
lj is a second derivative of tcd

lj ,

it can be non-negligible even if tcd
lj itself is very small. Dif-

ferent evaluations of f cd
lj [1] all agree that in MgB2 it has

an appreciable value. More specifically, an effective two-
band model derived from first-principle calculations [14]
yields λσπ/ λσσ = 0.21 and λπσ/λσσ = 0.15 [26].

At nonzero temperatures, the hybridization ampli-
tude gets an additional contribution proportional to 2〈νq〉,
hence it increases with temperature, consistently with the
findings of reference [13]

The purely phononic term

Hph ≡
∑

q

(
1
2

~ωq + e2ηqΦq

) (
νq + ν−q + 1

)
+

∑
q

e2ηq Φq

(
b†−qb

†
q + bqb−q

)
(43)

is diagonalized by a second squeezing transformation eT ≡
exp

[
−∑

q ϑq

(
b†−qb

†
q − b−qbq

)]
with the value of ϑq set

by:

tanh
(
2ϑq

)
=

~ωq

~ωq + 2e2ηqΦq

− 1 (44)

Notice that the sign of ϑq is opposite to the sign of
Φq. Also, as the relevant phonons are optical ones, ~ωq

never vanishes in the Brillouin zone, then tanh
(
2ϑq

) 6=
−1, and ϑq is always well defined. Due to the presence
of Φq in equation (44), the parameter ϑq depends on the

band-filling factors 〈nα(β)
kσ 〉 and on the band hybridization

〈α†kσβkσ + β†kσαkσ〉.
The diagonalized free-phonon Hamiltonian reads

therefore:

eTHphe−T =
∑

q

[
~ωq cosh

(
2ϑq

)
+ 2e2ηqe2ϑqΦq

]
νq + const.

=
∑

q

~$qνq + const. (45)

We have obtained a band-filling and hybridization-
depending renormalization of the phonon frequencies:

~$q = ~ωq cosh
(
2ϑq

)
+ 2e2ηqe2ϑqΦq (46)
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The final Hamiltonian therefore reads:

eTHe−T =
∑
kσ

(
Eα

k nα
kσ + Eβ

k nβ
kσ

)
+

1
N

∑
kqσ

[
e2ηqFαβ

kq

(
2〈νq〉+ 1

)] (
α†kσβkσ + β†kσαkσ

)
+

∑
q

~$qνq + eT eSH̃(1)
ep e−Se−T + const. (47)

where

Eζ
k = Eζ

k +
1
N

∑
q

F ζζ
kq e2ηq

(
2〈νq〉+ 1

)
(ζ = α, β) .

(48)
This has the shape of a standard (i.e. harmonic and

linear) SSH Hamiltonian for two hybridizing bands. How-
ever, also the linear SSH term has acquired a band-filling
and hybridization dependence, because it now reads:

eT eSH̃(1)
ep e−Se−T =

1√
N

∑
kqσ

eηq+ϑq

[
Γ αα

k,k−qα
†
kσαk−q,σ + Γ ββ

k,k−qβ
†
kσβk−q,σ

+ Γ αβ
k,k−qα

†
kσβk−q,σ + Γ βα

k,k−qβ
†
kσαk−q,σ

]
×

(
b†−q + bq

)
. (49)

Therefore also the phonon linewidths, due to the SSH
interaction, will depend, through exp(ϑq), on 〈nα(β)

kσ 〉 and
〈α†kσβkσ + β†kσαkσ〉.

The weakening of the linear electron-phonon interac-
tion is expressed by the coefficient exp(ϑq) exp(ηq). The
value of exp(ηq) is set by the diagonalization condition
of the anharmonic phonon Hamiltonian, equation (13) ac-
cording to the identity:

e2ηq =

√
1 + tanh

(
2ηq

)
1− tanh

(
2ηq

) . (50)

Therefore the squeezing effect related to the anhar-
monicity of the phonons also reduces the electron-phonon
interactions.

To conclude, let us check if the link that our model
establishes between the renormalization of the harmonic
frequency from Ωq to ωq and the reduction of the electron-
phonon coupling strength is consistent with the esti-
mates of those quantities as given, e.g., in references
[14,16,18]. The ratio Ωq /ωq is evaluated as 85%. [14],
75% [16] and 80% [18]. We assume that the value of
exp(ϑq) (Eq. (44)), which we can not estimate at this
stage, is not far from unity. By taking from reference [16]
xqq ∼ 7.8 eV−1, ~Ωq = 60 meV, and assuming a disper-
sionless mode in equation (11) we obtain, at zero tem-
perature, where we can neglect 〈νq〉, that Xq ∼ 1.12.
Then tanh

(
2ηq

) ∼ −0.105 yielding, from equation (15),
Ωq/ωq ∼ 0.85 and, from equation (50), exp

(
2ηq

)
= 0.90.

In Eliashberg’s theory [22] λ ∼ 〈|g2|〉/〈ω2〉, where 〈...〉
are suitable averages. In our model then λanhar/λhar ∼
e2ηq/X2

q

[
1− tanh2

(
2ηq

)]
= 0.65. which agrees with the

estimate [18] of a 30% weakening of λanhar . From the
fact that tanh

(
2ηq

) ∼ −0.105 we also conclude that the
large phonon softening found on passing from AlB2 to
MgB2 [16,20,21] is probably not due only to the harmonic-
to-anharmonic phonon change, because the squeezing-
induced softening effect in equation (15) is not strong
enough. The filling-dependent effect of exp(ϑq) should also
be taken into account quantitatively before drawing more
reliable conclusions on this point.

7 Conclusions

We have obtained a model Hamiltonian which should con-
tain the essential physics of MgB2.

Our starting point was a two-band Hamiltonian with
anharmonic phonons and both linear and quadratic
electron-phonon interactions of the bond-stretching
type, as dictated by the results of LDA calcula-
tions [14,16–18,20]. The final Hamiltonian followed by
applying a sequence of unitary transformations to both
the electronic and phononic terms. In particular, we have
been able to go beyond the Hartree-Fock approxima-
tion in treating the anharmonic effects. We have thus
obtained an effective Hamiltonian (Eqs. (47) and (49))
of a very simple structure. The electronic part has two
bands with a phonon-depending hybridization, generated
by the quadratic electron-phonon interaction, which in-
creases with temperature as observed [13]. The phononic
part has an effective harmonic free-phonon term with a
frequency which depends from the band filling factors. Fi-
nally, the effective electron-phonon interaction is reduced
to a linear one, but with an amplitude also depending from
the band filling factors, which would result in a similar de-
pendence of the phonon linewidths [19,21]. One could ask
if it might have been possible to obtain the same results
starting from a simpler Hamiltonian, as, for instance, the
one proposed in reference [23]. We do not think so. Indeed,
all our results depend basically from taking into account
the quartic anharmonicity and the second order EPI, as
can be checked by considering the limits for ηq → 0 and
ϑq → 0 of equations (46, 47) and (49). Namely, if both
ηq, ϑq → 0, from equation (49) one finds no reduction of
the effective EPI. If there is no second-order EPI, then
Φq = 0 follows, implying ϑq → 0, so that there is no filling
dependence of $q (Eq. (46)), no phonon-number effect on
the hybridization (Eq. (47)) and no filling dependence of
the phonon linewidths (Eq. (49)).

We have also shown that the numerical results of
Ref. [18] about the phononic features of the material,
namely the renormalization of the effective harmonic fre-
quency ωq and the reduction of the Eliashberg’s λ, can be
consistently interpreted as due to the phonons accomodat-
ing themselves in a “squeezed” state. On the other side,
squeezing effects alone are not strong enough to account
for the large E2g phonon softening on passing from AlB2

to MgB2 [16,20,21].
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